
Statistical Optimal Hash-based Longest Prefix Match

Yi Wang
Huawei Future Network

Theory Lab
Hong Kong

wy@ieee.org

Zhuyun Qi
Shenzhen Key Lab for Cloud

Computing Technology &
Applications (SPCCTA),

School of Electronics and
Computer Engineering, Peking

University
Shenzhen, China

qizhuyun@gmail.com

Huichen Dai
Tsinghua National Laboratory
for Information Science and
Technology, Department of

Computer Science and
Technology, Tsinghua

University
Beijing, China

dhconly@gmail.com

Hao Wu
Tsinghua National Laboratory
for Information Science and
Technology, Department of

Computer Science and
Technology, Tsinghua

University
Beijing, China

wuhao.thu@gmail.com

Kai Lei
∗

Shenzhen Key Lab for Cloud
Computing Technology &
Applications (SPCCTA),

School of Electronics and
Computer Engineering, Peking

University
Shenzhen, China

leik@pkusz.edu.cn

Bin Liu
Tsinghua National Laboratory
for Information Science and
Technology, Department of

Computer Science and
Technology, Tsinghua

University
Beijing, China

liub@tsinghua.edu.cn

ABSTRACT
Longest Prefix Match (LPM) is a basic and important function

for current network devices. Hash-based approaches appear to be

excellent candidate solutions for LPM with the capability of fast

lookup speed and low latency. The number of hash table probes,

i.e. the search path of a hash-based LPM algorithm, directly deter-

mines the lookup performance. In this paper, we propose Ω-LPM

to improve the lookup performance by optimizing the search path

of the hash-based LPM. Ω-LPM first reconstructs the forwarding

table to support random search [19], then it applies a dynamic pro-

gramming algorithm to find the shortest search path based on the

statistics of the matching probabilities. Ω-LPM concretely reduces

the number of hash table probes via searching most of the packets

in optimal search paths. Even in the worst case, the upper bound of

the average search path of Ω-LPM is 1 + log2(N), here N is the

length of the longest prefix in the routing table. The case studies of

the name lookup in Named Data Networking and the IP lookup in

current Internet demonstrate that Ω-LPM can shorten 61.04% and

86.88% search paths compared with the basic hash-based meth-

ods of name lookup [22] and IP lookup [12], respectively; fur-

∗Corresponding author: Kai Lei, leik@pkusz.edu.cn.

thermore Ω-LPM reduces 32.3% probes of the name lookup and

73.55% probes of the IP lookup compared with the optimal linear

search. The experimental results conducted on extensional name

tables and IP tables also show that Ω-LPM has both low memory

overhead and excellent scalability.

CCS Concepts
•Networks→ Packet scheduling; Network experimentation;

Keywords
Named Data Networking, Router, Name Lookup, Forwarding

1. INTRODUCTION
Packet transmission in current IP network is based on store-and-

forward mechanism. The network devices, e.g. routers, first store

the arriving packets in the input queue, and then forward these

packets according to the next-hop information by looking up the

destination addresses carried in packets’ headers against the for-

warding table. To forward packets both correctly and effectively,

a router should maintain the topology of the network in a rout-

ing table located in the control plane, and meanwhile converts its

routing table to forwarding table which is optimized for fast ad-

dress lookup and is downloaded into the packet forwarding en-

gine in the data plane. Generally, prefixes in a routing table are

aggregated to reduce the number of entries in the forwarding ta-

ble. Though prefixes aggregation could significantly reduce the

memory consumption of Forwarding Information Base (FIB), the

longest prefix match (LPM) operations, with which the destina-

tion address lookup should comply, will potentially slow down the

lookup speed.

2017 ACM/IEEE Symposium on Architectures for Networking and Communications

978-1-5090-6386-4/17 $31.00 © 2017 IEEE 153

2017 ACM/IEEE Symposium on Architectures for Networking and Communications

978-1-5090-6386-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ANCS.2017.29

153

2017 ACM/IEEE Symposium on Architectures for Networking and Communications

978-1-5090-6386-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ANCS.2017.29

153

For improving the lookup performance to satisfy the require-

ments of ever-increasing wire-speed packet forwarding, a lot of

LPM algorithms have been proposed. Generally, LPM algorithms

can be classified into two categories: trie-based and hash-based.

Trie-based LPM algorithms construct the FIB in the trie data struc-

ture, and look up each destination address by traversing the trie

from its root to its descendant nodes until finding the longest prefix

or fail. The advantages of trie-based algorithms are memory effi-

cient, easy to be organized, and supporting fast incremental update.

On the other side, trie-based mechanisms have low lookup perfor-

mance as each transition from one node to its child node needs at

least one memory access. For example, while an IPv4 address has

32 bits and each transition consumes 1 bit, the IPv4 address lookup

against a trie-based FIB needs 25 memory accesses at most1.

Hash-based LPM algorithms divide prefixes into different sets

according to their lengths2. And the prefixes in the same set have

the equal prefix length. The address lookup process is conducted

as the following three steps: (1) the lookup engine generates all the

possible prefixes (named candidate prefixes) of an address; (2) then

the lookup engine matches these candidate prefixes in the different

prefix sets to probe whether a candidate prefix is in a particular set;

(3) finally, the longest matching prefix is the one looked for. Com-

pared to trie-based LPM algorithms, hash-based LPM approaches

can achieve higher lookup speed and are more suitable for the vari-

able and unbounded length addresses, e.g. the URL similar naming

mechanism in Content-Centric Networking [16].

Therefore, we focus on optimizing hash-based LPM in this pa-

per. The essence of hash-based LPM search process is to find a

particular search path corresponding to the longest matching prefix.

Matching all the candidate prefixes in the sets is the basic and sim-

plest LPM algorithm [12], which costs a lot of needless operations

and slows down the lookup speed. An improved LPM algorithm

sorts the candidate prefixes in a descending order of their lengths,

and matches candidate prefixes from the longest one to the shortest

one [5]. The LPM search process is terminated when one prefix is

matched or all prefixes are dismatched.

The search path from the longest prefix to the shortest one, work-

ing in linear search mode, is the optimal search path without recon-

structing the prefix sets. In the normal scheme of prefixes partition,

the events — available candidate prefixes matching, are indepen-

dent of each other. In other words, whether a candidate prefix is

matched, the result does not affect other prefixes’ matching results.

Consequently, the longer prefixes still need to be checked if one

shorter prefix is dismatched; or the shorter prefixes should be tested

while one longer prefix is dismatched.

Inspired by the algorithm [19] of reconstructing the IP FIB to

support binary search, we break through the linear search mode via

reconstructing the FIB data structure to increase correlation among

different prefixes matching events: a prefix is available if and only
if all shorter prefixes are found in their corresponding sets. That

means (1) only the longer prefixes need to be checked when cur-

1IPv4 prefixes at least has 8 bits, therefore the first 8 bits are usually
looked up once.
2For IP address, the prefix length is the bit number of an IP prefix;
For name prefix, the prefix length is the component number of a
name prefix.

rent prefix is matched; (2) or only the shorter prefixes need to be

checked when current prefix is dismatched. Accordingly, the new

prefixes partition scheme stands by random search mode that facil-

itates to improve the lookup speed by shortening the search path of

hash-based LPM.

Our paper makes the following contributions:

1. The design of the dynamic programming algorithm for find-

ing the optimal search paths of hash-based LPM. The dy-

namic programming algorithm based on the statistics of the

matching probabilities has O(N3) time complexity, where

N is the maximal prefix length. The optimal search paths,

presented as a matrix, can be precalculated during the FIB re-

constructing process. Besides that, the optimal search paths

will be quickly recalculated along with the FIB’s updates3.

2. The analysis of the worst-case upper bound of the average

search path found by the dynamic programming algorithm.

Under the indication of the optimal search paths provided

by Ω-LPM, most of the packets can achieve approximately

optimal search path. Even in the worst case, the upper bound

of the average search path of Ω-LPM is 1 + log2(N), which

is the search path of binary search [28].

3. The case studies on the name lookup in Named Data Net-

working (NDN) [31] and the IP lookup in current Internet.

The experimental results demonstrate that Ω-LPM effectively

shortens the search path and improves the lookup speed. Ω-

LPM achieves 2.94× and 5.97× speedups compared to the

basic hash-based methods of name lookup [22] and IP lookup [12],

respectively. Meanwhile, the experimental results also show

that Ω-LPM has good scalability.

The rest of this paper is organized as follows. The framework

of hash-based LPM approaches is introduced in Section 2. In Sec-

tion 3, we first propose the dynamical programming algorithm to

find the optimal search path, then we analyze the worst-case up-

per bound of the average search path of Ω-LPM. Two cases of the

name lookup and the IP lookup are studied in Section 4, and the

extensive experimental results conducted on prefix tables and IP

tables are demonstrated in Section 5. After reviewing related work

in Section 6, we conclude this paper in Section 7.

2. THE BACKGROUND OF HASH-BASED
LONGEST PREFIX MATCH

2.1 Address naming mechanism
An address is a numerical/string label assigned to each object

(e.g., a hardware device, a content, a service) to participate in the

computer network which utilizes addresses for communication. The

role of an address has been characterized as follows [2]: (1) A name

indicates what we seek; (2) An address indicates where it is; (3) A

route indicates how to get there.

The fixed-length IP addresses, i.e. 32-bit IPv4 or 128-bit IPv6,

are applied by current IP networks. An IP address serves two

3Note that the dynamic programming algorithm runs in the control
plane of a router, and the lookup engine only utilizes the matrix to
indicate the optimal search path of an address.

154154154

��������
����
����

����
���	��
������
������

�������	

���

����
����
����

�������������

���	
	���
�
��
����

�
��
��
�����

������

����������������������
��������������������

��������

�������
�����
��

�
��
��

Figure 1: The general framework of a hash-based longest prefix
match process.

principal functions: network interface identification and location

addressing. Routers forward packets based on the destination IP

address carried in a packet header. To forward packets correctly,

each router maintains a routing table to store the topology of its

global/local network. Since an IPv4/IPv6 prefix has at most 32-

bit/128-bit, the length of an IPv4/IPv6 prefix is the number of its

bits. Specifically, the aggregation granularity of IP prefixes is 1 bit.

Different from IP-based network, Named Data Networking (NDN) [31],

an instance of the Content-Centric Networking (CCN) [16] paradigm,

employs URL-like string names to identify contents and devices.

An URL-like name, composed of components, has hierarchical struc-

ture. For example, name “/org/IEEE/www” is composed of three

components “org”, “IEEE”, and “www”. Here, the character “/” is

the delimiter. Given that each component in a name has unbounded

length and the component number of a name is variable, an NDN

name has variable and unbounded length. Specifically, the length

of an NDN name is its component number and the name prefixes in

a router’s routing table are aggregated in the granularity of a com-

ponent.

In any case of address naming mechanism (e.g., IP address, NDN

name), as long as it has hierarchical structure and can be aggre-

gated, its lookup process should comply with the longest prefix

match to guarantee correctness.

2.2 The framework of hash-based longest
prefix match

Hash-based LPM algorithms implement fast lookup speed by

leveraging the high lookup (exact match) performance of hash ta-

ble. Logically, the prefixes in the FIB are partitioned into different

sets according to their lengths. The prefixes having equal length

are put into a same set, and prefixes in different sets have differ-

ent lengths. To transfer the longest prefix match to the exact prefix

�����������

������������	

������������	�

������������	�
��

�
����������� ���
�
�����
������

��������

���
����

�

����

Figure 2: Probing the prefixes in a descending order based on
its length.

match, the lookup engine first generates all the possible prefixes of

the searched address as candidate prefixes; then it checks all the

candidate prefixes to find the longest matching prefix.

Figure 1 illustrates the general framework of a hash-based LPM

process. 10 prefixes in the FIB are partitioned into 4 sets: Set-1 ∼
Set-4. When a packet arrives at a router with a destination address

(an NDN name) “/a/b/c/f”, the lookup engine looks up “/a/b/c/f”

against the FIB to obtain the next-hop information. Specifically,

the lookup engine first generates 4 candidate prefixes of “/a/b/c/f”:

“/a”, “/a/b”, “/a/b/c”, and “/a/b/c/f”. After that, each candidate pre-

fix is searched against its corresponding prefix set where all pre-

fixes have the same length (the component number). In this exam-

ple, the longest matching prefix — “/a/b/c” is the exact one looked

for. Finally, the lookup engine obtains the forwarding information

by searching the longest matching prefix (“/a/b/c”) against the hash

table that stores the next-hop information.

2.3 The prior art

2.3.1 The optimal linear search scheme
The search process of an address can be terminated when the

lookup engine finds the longest matching prefix. Based on this

observation, the lookup engine first sorts the candidate prefixes in

a descending order of prefix length, and then it iteratively probes

the candidate prefixes against their corresponding sets from the

longest one to the shortest. As a result, the first matching pre-

fix is the longest one looked for; if all candidate prefixes are dis-

matched, the lookup engine returns null to next module. As de-

picted in Figure 2, 4 candidate prefixes of the address “/a/b/d/e” are

sorted in a descending order of prefix length, and the search path

is: “/a/b/d/e”, “/a/b/d”, “/a/b”, and “/a”. Assuming that the FIB

contains 10 prefixes as demonstrated in Figure 1. After looking up

“/a/b/d/e” against Set-4 and “/a/b/d” against Set-3, the lookup en-

gine probes “/a/b” in Set-2 and finds that “/a/b” is a matching prefix.

Consequently, the LPM search process is terminated and “/a/b” is

returned as the longest matching prefix.

Probing the prefixes in a descending order is simple and it is the

optimal linear search path for the original FIB. In the original FIB,

prefix sets are independent of each other. In other words, whether

a candidate prefix is matched, the result does not affect other can-

didate prefixes’ match results. Accordingly, when a matching pre-

155155155

�

� �

� � �

� �

	 �
 �

!

�

��

�

" #

� �

�� ��

 �

��

��

���	

����

����

���

���	��

���
��

������

������

���	���

���	����

Figure 3: The trie and the reconstructed FIB of the original
FIB in Figure 1.

fix is found, the lookup engine must check every candidate prefix

which is longer than this matching one to confirm this one is the

longest matching prefix.

2.3.2 Reconstructing the FIB to support random search

The search path described in Section 2.3.1 is the optimal one un-

der the constraint of the original FIB, in which prefix sets are inde-

pendent of each other. However, the lookup engine still works with

linear search, and the average number of prefix probes is O(N),

here N is the length of an address.

To further shorten the search path of hash-based LPM, Wald-

vogel et al. [19] break through the linear search by reconstructing

the FIB data structure to add correlation among different prefixes

sets: a prefix can be available if and only if all shorter prefixes are

found in their corresponding sets. That means only the longer pre-

fixes need to be checked when one prefix is matched; or the shorter

prefixes need to be checked when one prefix is dismatched. Conse-

quently, the new prefix partition of the FIB supports random search

to increase the lookup speed by shortening the search path.

Since a prefix in the FIB is composed of components (e.g., 1-bit

in the IP address, one string component in the NDN name), each

prefix has its meta-prefixes. For example, the prefix “/a/b/c/d” has

3 meta-prefixes: “/a/b/c”, “/a/b”, and “/a”. If the all 3 meta-prefixes

of “/a/b/c/d” are inserted into the FIB, the lookup engine can guar-

antee that no longer prefixes will be matched when the current pre-

fix is dismatched. Note that we can distinguish the meta-prefixes

with the original prefixes according to their forwarding informa-

tion. Consequently, the correlation among different prefix sets is

created, and the reconstructed FIB supports random search.

Intuitively, generating the meta-prefixes of a prefix in the orig-

inal FIB and inserting them into the original FIB will cause the

memory expansion problem of the reconstructed FIB. However, the

number of prefixes including the meta-prefixes and the original pre-

fixes in the reconstructed FIB is equal to the number of edges4 in a

4Note that the number of edges in a trie equals the number of nodes

��������

���������	

���������	�

���������	�
��

�
����������� ���
�
�����
������

��������

���� ���
���
�
�����

Figure 4: An example of binary search mechanism for LPM.

trie that is applied to construct the original FIB. If we employ trie

to organize the original FIB, all extra meta-prefixes of an original

prefix will be stored in the trie as inner nodes. Figure 3 demon-

strates the trie and the reconstructed FIB of the original FIB of Fig-

ure 1. In Figure 3, the trie and the reconstructed FIB both contain

12 edges/prefixes. In the trie, node-2 and node-5 corresponding to

prefixes “/f” and “/a/d” are inserted as inner nodes; as well as in

the reconstructed FIB, meta-prefixes “/f” and “/a/d” are inserted.

Therefore, the prefix number of the reconstructed FIB is equal to

the number of edges in the original FIB’s trie, and there is no mem-

ory space expansion problem in the reconstructed FIB.

2.3.3 Binary search scheme
With the help of the reconstructed FIB, the lookup engine can

search the longest matching prefix in the random mode. The hash-

based LPM search process can be abstracted as the classical prob-

lem of integer search, e.g., finding the key in a sorted array. One

of the most effective algorithm is the binary search algorithm that

needs O(logN) probes to find the longest matching prefix on av-

erage [19]. Therefore, the lookup engine can reduce the number

of probes from O(N) to O(logN) by replacing the linear search

scheme with binary search scheme [28].

Figure 4 illustrates an example of binary search scheme for hash-

based LPM. The lookup engine generates and sorts the 4 candi-

date prefixes of the address “/a/b/d/e”. Then the candidate pre-

fix “/a/b/d” with 3 (�(1 + 4)/2� = 3) components is checked at

first. Given that “/a/b/d” cannot match any prefix in Set-3 of the

reconstructed FIB presented in Figure 3, the binary search scheme

chooses a shorter candidate prefix “/a/b” with 2 (�(1 + 3)/2� = 2)

components as the next one to be probed. Since Set-2 contains

prefix “/a/b”, the binary search scheme chooses a longer prefix to

carry on searching. However, the failure of prefix “/a/b/d” reveals

that there is no longer prefix than “/a/b/d” will be matched. There-

fore, the lookup engine stops the search process and returns prefix

“/a/b” as the longest matching prefix.

3. THE OPTIMAL SEARCH PATH FOR
HASH-BASED LONGEST PREFIX MATCH

3.1 The statistical optimal search scheme
The essence of hash-based LPM search process is a search path

for finding the longest matching prefix. Compared with the basic

in a trie minus one.

156156156

Algorithm 1: Dynamic Programming Algorithm For Optimizing

LPM

Input: N , P ′i
Output: Cij , Lij

1 for i← 1 to N − 1 do
2 Cii ← 1;

3 Lii ← i;

4 end
5 for i← 1 to N do
6 for j ← 1 to N − i do
7 for k ← j to j + i do
8 C′ij ← 1 + (1− P ′i) ∗ Ci(k−1);

9 C′ij ← C′ij + P ′i ∗ C(k+1)j ;

10 if C′ij < Cij then
11 Cij ← C′ij ;

12 Lij ← k;

13 end
14 end
15 end
16 end

linear search scheme described in Section 2.3.1, the binary search

scheme effectively reduces the number of probes from O(N) to

O(logN) by reconstructing the FIB. However, we are still inter-

ested in whether there is an optimal search path for the recon-

structed FIB, and how to find this optimal search path.

Since the length distribution of prefixes in the routing table is

known in advance, there should be an optimal search path for each

address. The number of prefix sets is no greater than N , there-

fore even in the worst case we can find the optimal search path

of an address by applying exhaustive search that has O(N !) time

complexity. However, the exhaustive search is an exponential time

complexity solution, and we need to design a more effective algo-

rithm to find the optimal search path for practical implementation.

Fortunately, we design and implement a dynamic programming

algorithm only with O(N3) time complexity to find the optimal

search path. Assuming that the prefixes in the reconstructed FIB

are partitioned into N prefix sets; Cij is the number of probes in

the optimal search path from Seti to Setj ; PREk is the candidate

prefix with k components; Pi is the matching probability of Seti
in the original FIB; and P ′i is the matching probability of Seti in

the reconstructed FIB. The optimal search path of an address is

equivalent to finding the minimal C1M , if M < N ; or the minimal

C1N , if M ≥ N . Here M is the length of the name or the IP

address.

The problem of finding the minimal Cij can be decomposed

into two optimization sub-problems: Ci(k−1) and C(k+1)j . Here,

i ≤ k ≤ j; and Cij = 0, if i > j. As the reconstructed FIB sup-

ports random search, we suppose the candidate prefix PREk with

k components will be checked at first. If PREk is dismatched,

the length of the longest matching prefix will be less than k, and

the lookup engine will search from PRE1 to PREk−1 to lookup

the exact longest matching prefix, i.e., to find the minimal Ci(k−1);

otherwise PREk is matched, the length of the longest matching

prefix will be k or greater than k, and the lookup engine will search

from PREk+1 to PREj to lookup the exact longest matching pre-

fix, i.e., to find the minimal C(k+1)j . Therefore, the minimal Cij

can be calculated in the following formula:

Cij = MIN{1 + (1− P ′k) ∗ Ci(k−1) + P ′k ∗ C(k+1)j} (1)

Here, 1 ≤ i ≤ N , 1 ≤ i ≤ N , i ≤ k ≤ j and Cii = 1 ac-

cording to Formula 1. By storing the solution of sub-problem (e.g.,

Cij), the optimal search path C1N is solved bottom-up. The dy-

namic programming algorithm, described in Algorithm 1, reduces

the time complexity of finding the optimal search path from O(N !)

to O(N3) compared with the exhaustive search.

To present the dynamic programming algorithm more clearly,

Figure 5 illustrates the matrixes of Cij and �ij (prefix length) of

the dynamic programming algorithm for finding the optimal search

path of the FIB demonstrated in Figure 3.

1. The dynamic programming algorithm recalculates the match-

ing probability P ′i of Set-i in the reconstructed FIB based on

the matching probability Pi in the original probability. Given

that the meta-prefixes of a prefix is inserted into the recon-

structed FIB, there is P ′i =
∑N

k=i Pk. For example, in Fig-

ure 5, the original Pi (i from 1 to 4) are {0.1, 0.3, 0.4, 0.2}5.

Consequently, we can calculate P ′i = {1, 0.9, 0.6, 0.2}.

2. Cij and �ij are initialized, respectively. Cii is set to 1, and

the other Cij (i
= j) is set to N + 1. �ii is set to i, and the

other �ij (i
= j) is set to 0.

3. The Cij and �ij are searched iteratively (line 5 ∼ 16 in Al-

gorithm 1) from j − i = 1 to j − i = N − 1. For ex-

ample, there are two feasible ways to calculate C34, Path-1:

< �33 → �44 > or Path-2: < �44 → �33 >. In Path-1, the

prefix with 4 components (�44) will be probed if and only if

the prefix with 3 components (�33) is matched. Therefore,

Cpath1 = 1+ P ′3 ∗C44 = 1.6. On the other side, in Path-2,

the prefix with 3 components (�33) will be probed if and only

if the prefix with 4 components (�44) is dismatched. Hence,

the Cpath2 = 1 + (1 − P ′4) ∗ C33 = 1.8. Consequently,

the Paht-1 is chosen as the optimal search path, and there are

C34 = 1.6 and �34 = 3.

4. The dynamic programming algorithm stops and returns the

matrixes of Cij and �ij to indicate the optimal search path.

For an address with M (M ≥ N) components, the optimal

search path is illustrated in Figure 6. At first, the candidate

prefix PRE3 with 3 components is checked. If PRE3 is

matched in Set-3, the next prefix to be checked is PRE4

as �44 = 4; If PRE3 is dismatched, the next prefix to be

checked is PRE2 as �12 = 2. The lookup engine probes the

prefixes one by one until finding the longest matching prefix

or all prefixes in the optimal path are checked.

5We assume the access probability of each prefix in the original
FIB is equal, i.e., Pi = |Seti|/N , here |Seti| is the number of
prefixes in Seti. The measurement technology of the matching
probability is another research problem, and in this paper we fo-
cus on finding the optimal search path based on the statistics of the
matching probabilities. However, the worst-case upper bound of
the average search path of Ω-LPM, derived in Section 3.2, is irrel-
evant with the statistics of the matching probabilities.

157157157

��
 ��� ��� ���

�

��
�

��� �

����

 � � �
� � �

� �
�

!�"

�
�

�

�
�

�

�

�
�

#�����

�

�
�

$

 ��% �� ���$&'�

&�

Figure 5: The Cij and �ij matrixes of the dynamic program-
ming algorithm.

The matrix of �ij , indicating the optimal search path of the FIB,

can be precalculated as well as the FIB reconstructing process. Be-

sides that, the matrix of �ij will be recalculated along with the FIB’s

updates. As the time complexity of the dynamical programming al-

gorithm is O(N3) and N usually is small (In our experiments, N

is 32 and 6 in IPv4 and NDN), the matrix of �ij can be recalculated

quickly. Note that the dynamic programming algorithm runs in the

control plane of a router, and the lookup engine only utilizes the

matrix of �ij to indicate the optimal search path of an address.

3.2 The worst-case upper bound of the aver-
age search path of statistical optimal LPM

As described in Section 3.1, the matrix Cij indicates the least

upper bounds of the average search paths to find the addresses with

different number of components , as well as the matrix �ij indicates

the exact search paths. The matrixes Cij and �ij can be calculated

fast according to the routing table by the Algorithm 1 which has

O(N3) computational complexity, but we are still interesting to

find the worst-case upper bound when the search addresses violate

the statistics of the matching probability.

Formula 1 demonstrates that Cij is the minimal value in the all

paths. If we choose any path, e.g., a candidate prefix PREm, the

path length C
′
ij will be greater than or equal to Cij :

Cij = MIN{1 + (1− P ′k) ∗ Ci(k−1) + P ′k ∗ C(k+1)j}
≤ 1 + (1− P ′m) ∗ Ci(m−1) + P ′m ∗ C(m+1)j

(2)

If Ci(m−1) ≥ C(m+1)j , we get:

C
′
ij = 1 + (1− P ′m) ∗ Ci(m−1) + P ′m ∗ C(m+1)j

= 1 + Ci(m−1) + P ′m ∗ (C(m+1)j − Ci(m−1))

≤ 1 + Ci(m−1)

(3)

Else if Ci(m−1) ≤ C(m+1)j , we get:

C
′
ij = 1 + (1− P ′m) ∗ Ci(m−1) + P ′m ∗ C(m+1)j

= 1 + C(m+1)j + (1− P ′m) ∗ (Ci(m−1) − C(m+1)j)

≤ 1 + C(m+1)j

(4)

Here, we choose m = �(i+ j)/2�. Therefore, C
′
ij can be calcu-

lated recursively according to Formula 3 or Formula 4. Formally,

the recursive process of calculating C
′
ij can be represented by For-

mula 5.

T (n) = T (�n
2
�) + 1 (5)

�

��

(�����)��*�	

)��*�	

Figure 6: The optimal search path of an address with more
than N components.

Here, n is the length of an address, i.e., n = j − i+ 1; and T (·)
is a function. According to the Master Theorem [10], we can get:

C
′
ij ≤ T (n) ≤ 1 + log2(�

n

2
� ∗ 2) ≤ 1 + log2(n) (6)

Formula 6 can be proofed via applying the mathematical induc-

tion, and the proof is depicted below.

PROOF. Since Cij = 1 when i = j, there is T (1) = 1. The

process of the mathematical induction is that:

1. When n = 1, there are T (1)=Cii=1 and 1 + log2(1)=1, so

T (1) ≤ 1 + log2(1);

2. Assuming T (n) ≤ 1 + log2(n) is correct, then

3. we get:

T (2n) = T (� 2n
2
�) + 1

= T (n) + 1

≤ 1 + 1 + log2(n)

≤ 1 + log2(2n)

Or

T (2n+ 1) = T (� 2n+1
2
�) + 1

= T (n) + 1

≤ 1 + 1 + log2(n)

≤ 1 + log2(2n)

≤ 1 + log2(2n+ 1)

4. Therefore, the inequality T (n) ≤ 1 + log2(n) is proofed to

be correct.

Since Cij < C
′
ij , we get Cij < 1 + log2(n), i.e., the upper

bound of Cij is 1 + log2(n), here n = j − i+ 1.

4. CASE STUDIES

4.1 Case study 1: Name Lookup
Named Data Networking (NDN) was proposed to embrace Inter-

net’s functionality transition: from host-centric communication to

content-centric information dissemination. Different from IP-based

network routers, NDN routers forward packets by content names,

which have variable and unbounded length. Further, an NDN name

routing table could be several orders of magnitude larger than a

current IP routing table. This kind of complex name constitution

plus the huge-sized name routing table makes wire speed NDN

name lookup an extremely challenging task. Practical name lookup

mechanism design and implementation, therefore, requires sub-

stantial innovation and re-engineering.

158158158

Figure 7: The distribution of name prefixes in the name ta-
bles.

Figure 8: The percentages of names with different compo-
nent numbers in the traces.

Hash-based algorithms for name lookup perform high lookup

speed, low memory consumption, and good scalability [22, 23, 25].

However, the search paths of the earlier works on hash-based name

lookup are not optimized and still have space to improve. There-

fore, in this case study, we apply the dynamic programming algo-

rithm (introduced in Section 3.1) to calculate the optimal search

path to reduce the number of probes and speed up the lookup pro-

cess.

Prefix tables and name traces: Both prefix tables and name traces

used in our experiments are downloaded from the webpage [6]. The

two prefix tables, “3M prefix table” and “10M prefix table”, contain

2,544,794 entries and 9,552,363 entries, respectively. Each prefix

table entry is composed of an NDN-style name and a next-hop port

number. The distribution of the number of components and the av-

erage length of prefixes are shown in Figure 7.

The name traces simulate the destination names carried in NDN

packets. There are two types of name traces, simulating average

lookup workload and heavy lookup workload, respectively. Each

name trace contains 200M names. The percentage of names with

different number of components and the average length of names

in each trace are illustrated in Figure 8.

Figure 9: The distribution of IP prefixes in the Sydney.

Figure 10: The distribution of IP prefixes in the Oregen.

4.2 Case study 2: IP Lookup
IP lookup is a basic but important function for a IP router. A lot

of works on IP lookup including hardware circuits (e.g., TCAM),

architectures, algorithms, and data structures, have been done to

improve the IP lookup performance. Hash-based algorithms [19,

12, 27] are one of the main branches of IP lookup. Waldvogel et al.
propose a binary search scheme to shorten the search path and im-

prove the lookup performance. But the binary search scheme can-

not obtain the optimal search path. Therefore, to further improve

the lookup performance, we apply our programming algorithm on

IP lookup to get the optimal search path.

IP tables and IP traces: The IP tables (named Sydney and Ore-

gon) used in our experiments are downloaded from the RIPE [7]

and Oregon [8], respectively. Sydney contains 400,010 IP prefixes

and Oregon contains 402,411 IP prefixes. The prefix distributions

of Sydney and Oregon are illustrated in Figure 9 and Figure 10.

The IP trace used to test the performance is downloaded from the

router of Chicago in CAIDA [4]. The IP trace sustains 5 minutes

and contains 91,568,588 packets.

159159159

Table 1: The matrix Cij of the 3M prefix table.
i\j 6 5 4 3 2 1
1 2.005991 2.005974 2.000000 1.778248 1.000000 1.000000

2 2.005991 2.005974 2.000000 1.778248 1.000000

3 1.227743 1.227725 1.221752 1.000000

4 1.027018 1.026938 1.000000

5 1.002989 1.000000

6 1.000000

Table 2: The matrix �ij of the 3M prefix table.
i\j 6 5 4 3 2 1
1 3 3 3 3 2 1

2 3 3 3 3 2

3 3 3 3 3

4 4 4 4

5 5 5

6 6

5. EXPERIMENTAL RESULTS
In this section, we evaluate the lookup performance improved

by optimizing the search path of hash-based LPM. Totally 4 meth-

ods are implemented: the basic method used in the literatures [22,

12] that probes all the sets to find the longest matching prefix; the

optimal linear search scheme introduced in Section 2.3.1; the bi-

nary search scheme used by Waldvogel et al. [19]; and the Ω-LMP

proposed by us.

5.1 Experimental results of name lookup

5.1.1 Experimental Setup
The name lookup engine is implemented and run on a commod-

ity PC with two 6-core CPUs. The PC runs Linux Operating Sys-

tem in the version 2.6.41.9-1.fc15.x86_64. The entire program con-

sists of about 2,800 lines of code, developed by C++ programming

language. The part of multi-core parallel processing is developed

using OpenMP API [1] in the version 2.5.

We combine the NameFilter [22] with the 3 LPM search schemes

introduced in Section 3 to increase the name lookup speed in NDN.

Totally 4 methods are implemented. The baseline is the origi-

nal NameFilter, which is improved by applying the basic linear

search path to shorten the search path (Named NF-Linear). Af-

ter reconstructing the data structure of the FIB, the binary search

scheme [28] is used to further shorten the search path (Named NF-

Binary). Finally, the optimal search scheme is used to generate the

shortest search path (Named NF-Optimal).

5.1.2 Search path length
First of all, the lookup engine calculates the optimal search paths

of the prefix tables according to the Algorithm 1. The matrixes Cij ,

storing the lengths of the optimal search paths of the 3M prefix

table and the 10M prefix table, are listed in the Table 1 and Table 3,

respectively. And the matrixes �ij , containing the indications of

the optimal search paths of the 3M and the 10M prefix tables, are

presented in the Table 2 and Table 4, respectively. In the average

case, the lengths of the optimal search paths on the 3M and the

Table 3: The matrix Cij of the 10M prefix table.
i\j 6 5 4 3 2 1
1 2.025358 2.025229 2.000000 1.589941 1.000000 1.000000

2 2.025358 2.025229 2.000000 1.589941 1.000000

3 1.435417 1.435288 1.410059 1.000000

4 1.061841 1.061525 1.000000

5 1.005141 1.000000

6 1.000000

Table 4: The matrix �ij of the 10M prefix table.
i\j 6 5 4 3 2 1
1 4 3 3 3 2 1

2 4 3 3 3 2

3 4 3 3 3

4 4 4 4

5 5 5

6 6

10M prefix tables for the name with more than 6 components are

2.0061 and 2.0254. As illustrated in Figure 7, the maximal length

prefixes in the 3M prefix table and the 10M prefix table consist of 6

components. Therefore, the worst-case upper bound of the search

path of the statistical optimal LPM is 3.585.

Then, we compare the search path lengths of the 4 methods con-

ducting on the 3M and 10M prefix tables with the average and

heavy workloads. The experimental results are shown in Table 5.

The basic method probes all candidate prefixes of a name to find

the longest matching prefix, so on average it probes 5.21 and 5.30

prefixes against 3M prefix table under average workload and heavy

workload, respectively. By checking the prefixes from the longest

one to the shortest, the optimal linear method effectively reduces

the number of probes down to 3. The binary search method, prob-

ing 3.27 prefixes on average, has longer search path length than

the linear method, as a name in the traces at most has 11 compo-

nents and the most of names are shorter than 9. The final scheme,

Ω-LPM, only needs to check 2.03 prefixes on average to find the

longest matching prefix, which shortens 61.04%, 32.33%, and 37.91%

search paths of the basic method, the linear method and the binary

method, respectively. Meanwhile, the experimental results on 10M

prefix table show the same conclusion.

Beyond that, we are still interested in foreseeing the performance

trend as prefix table size grows. Toward this endčňbased on 10M

prefix table, we generate ten prefix tables with 1 ∼ 10 million pre-

fixes, respectively. The experiments are then conducted on these

ten prefix tables. Figure 11 illustrates the measured results of the

search path length under average workload. The search path length

of the binary method depends on the specific trace, and the length

jitter of NF-Binary is larger than the other 3 methods. Whatever,

Ω-LPM has the shortest search path length. The better experimen-

tal phenomenon shown in Figure 11 is that the search path length

of Ω-LPM decreases gradually as the prefix table size grows. Con-

sequently, Ω-LPM has good scalability and is suitable for larger

prefix tables.

5.1.3 Memory space
The FIB is reconstructed to support random search by inserting

160160160

Figure 11: The scalability of search path length.

Table 5: The average lengths of the search paths with different
methods.

Prefix

Table
Trace

The average search path length

Basic Method Linear Binary Search Ω-LPM

3M Average 5.21 3.00 3.27 2.03

3M Heavy 5.30 3.90 4.19 2.31

10M Average 5.33 3.76 3.36 2.49

10M Heavy 5.41 3.95 4.81 2.77

Sydney Chicago 25 12.47 4.03 3.29

Oregon Chicago 25 12.40 4.02 3.28

the meta-prefixes of each prefix to the FIB. Obviously, the recon-

structed FIB has more prefixes than the original one. Fortunately,

the extra memory space is acceptable according to the measurement

results demonstrated in Table 6. On 10M prefix table, the origi-

nal FIB contains 9,552,363 prefixes, and the reconstructed FIB has

10,478,119 prefixes which costs extra 9.69% memory.

Figure 12 illustrates the performance trend of memory space and

the extra memory percentage as the prefix table size grows. It is

consistent with our expectation that the numbers of prefixes of dif-

ferent methods gradually increase along with the growing of the

prefix table size. However, the percentage of extra prefixes caused

by reconstructing the FIB decreases gradually, as the most of meta-

prefixes of the incremental prefixes have been inserted into the re-

constructed FIB. With the scale of prefix table expanding, less and

less meta-prefixes need to be inserted into the reconstructed FIB.

Therefore, we can predict that the extra memory overhead can be

negligible on a FIB with tens, or even hundreds million of prefixes.

5.1.4 Lookup speed
We first compare the lookup speed of the 4 methods in the single

thread work mode. The experimental results are listed in Table 7.

Both experimental results conducted on 3M prefix table and 10M

prefix table demonstrate that NF-Optimal can effectively improve

the name lookup speed. On 10M prefix table, NF-Optimal achieves

2.03 MSPS (Million Searches Per Second) and 1.88 MSPS under

average workload and heavy workload, respectively. Compared

with NameFilter, NF-Optimal achieves 1.43× speedup.

Table 8 further presents the lookup speed of 4 methods running

Figure 12: The scalability of memory space and extra mem-
ory percentage.

Table 6: The number of prefixes of different methods on the
name prefix tables and IP prefix tables

Prefix

Table

The number of prefixes

Basic Method / Linear Binary Search / Ω-LPM

3M 2,544,794 2,806,907

10M 9,552,363 10,478,119

Sydney 400,010 971,593

Oregon 402,411 981,457

with 24 threads. Under average workload, NF-Optimal achieves

35.75 MSPS and 34.82 MSPS on 3M prefix table and 10M prefix

table, respectively, which is 16× speedup compared with the per-

formance conducted in the single thread work mode. Assuming the

average packet length in NDN is 250 bytes, the name lookup en-

gine, applying NF-Optimal mechanism, can achieve about 70Gbps.

If the transmission speed of an interface card equipped on a soft-

ware router is 10Gbps, this kind of name lookup engine can deal

with 7 interface cards’ traffic at the same time.

The name lookup throughput of NameFilter and NF-Optimal, as

demonstrated in Figure 13, tend to stabilize on average workload

along with the prefix table size grows, while the lookup speeds of

NF-Linear and NF-Binary gradually decrease along with the prefix

table size grows. NF-Optimal is more stable than NF-Linear and

NF-Binary, since optimal search path is dynamically adjusted ac-

cording to the FIB in real time. Another reason is that the optimal

search path is not only effective for the name with more than N

components, but also effective for the short names with less than

N components. In summary NF-Optimal has good scalability of

lookup speed.

5.1.5 Update
To support random search, the meta-prefixes of a prefix in the

original FIB should be inserted into the reconstructed FIB. There-

fore, the update of the reconstructed FIB is more complex than

the update of the original FIB. 1) To insert a prefix into the recon-

structed FIB, all its meta-prefixes should be generated and inserted

into the reconstructed FIB. Each meta-prefix needs to be searched

in the FIB to check whether it has been inserted into the FIB. Only

161161161

Table 7: The lookup speed of different methods with 1 work
thread.

Prefix

Table
Trace

The lookup speed (MSPS)

NameFilter
NF-

Linear

NF-

Binary

NF-

Optimal

3M Average 1.68 2.04 1.99 2.13

3M Heavy 1.49 1.90 1.84 1.93

10M Average 1.42 1.78 1.91 2.03

10M Heavy 1.33 1.84 1.66 1.88

Table 8: The lookup speed of different methods with 24 work
threads.

Prefix

Table
Trace

The lookup speed (MSPS)

NameFilter
NF-

Linear

NF-

Binary

NF-

Optimal

3M Average 26.49 31.67 36.14 35.75

3M Heavy 25.22 28.12 29.89 32.48

10M Average 24.88 25.76 30.45 34.82

10M Heavy 22.34 27.89 28.65 31.22

the new sub-prefix will be inserted into the FIB. 2) To delete a pre-

fix, only the prefix itself will be removed from the reconstructed

FIB, since the sub-prefixes of the deleted prefix may be the sub-

prefixes of other prefixes.

The update performance of the 4 methods are illustrated in Fig-

ure 14. Given NameFilter only needs one exact match operation

to insert a prefix or delete a prefix, its insertion/deletion through-

put is higher than NF-Optimal. NF-Optimal can still achieve 0.9

million insertions per second or 1.0 million deletions per second.

Meanwhile, NF-Optimal trends stable along with the prefix table

size grows.

5.2 Experimental results of IP lookup

5.2.1 Search path length
The average search path lengths of the 4 methods on the IP tables

of Sydney and Oregon under the Chicago trace are listed in Table 5.

The basic method probes all possible candidate IP prefixes to find

the longest matching one, therefore it needs 25 probes (The length

of an IP prefix must be greater than 7). On average, the optimal

linear search scheme probes 12.47 times and 12.40 times on the

IP tables of Sydney and Oregon, respectively. The binary search

method achieves better performance than the linear scheme, it only

needs around 4 probes. Ω-LPM further improves the lookup perfor-

mance. It only needs to check 2.38 prefixes on average to find the

longest matching prefix. Consequently, on the IP tables, Ω-LPM

shortens 86.88%, 73.55%, and 18.41% search paths of the basic

method, the linear method and the binary method, respectively.

5.2.2 Memory space
Given the IP prefixes has 25 prefix sets, the reconstructed FIBs

of IP tables cost more memory than the reconstructed FIBs of name

tables. The measurement results of the reconstructed IP FIBs are

Figure 13: The scalability of throughput with average work-
load.

Figure 14: The update and deletion performance.

demonstrated in Table 6. The reconstructed IP FIBs of Sydney and

Oregon are 2.42× and 2.43× times larger than the original FIBs.

Given the number of IP prefixes in the reconstructed FIB is equal to

the number of edges in the trie that organizes the FIB, the memory

cost is acceptable for the real system.

6. RELATED WORK
As a basic function of a router, various LPM algorithms have

been studied for more than 20 years.

TCAM-based Algorithms: Ternary content addressable memory

(TCAM), as a fully associative memory which stores wildcards

(don’t care states) in a memory cell in addition to 0s and 1s com-

pared with conventional binary memory, matches the data in par-

allel by providing a comparator in each cell. Despite TCAM re-

turns the search result within a single memory access and achieves

high speed lookup, the high cost and the large power consump-

tion of TCAM make it unattractive for high-end routers. Numerous

TCAM-based approaches [30, 32, 18] are proposed to reduce the

power consumption, but TCAM’s range of use is greatly limited

because of its disadvantages that stem from the small capacity and

the word-width.

Trie-based Algorithms: Trie [14] structure has been widely used

162162162

to construct the forwarding table in IP network to address the LPM

problem. PATRICIA trie algorithm [17], first used in file system

and then used in BSD kernel [3], applies the path-compressed trie

structure to reduce the memory accesses of the original trie. Lulea

algorithm [11] further speeds up the lookup speed by utilizing Bitmap

technology to compress the forwarding table which is small enough

to fit in the cache of a conventional general purpose processor.

Multibit-tire architectures, such as Tree Bitmap [13], can improve

the lookup speed as one memory access will consume multiple

bits in the IP address. Since one lookup in Tree Bitmap still re-

quires multiple off-chip memory accesses, FlashTrie [9] overcomes

the shortcomings of the multibit-trie based approaches by using a

hash-based membership query to limit off-chip memory accesses

per lookup and to balance memory utilization among the memory

modules.

However, the trie-based approaches are appropriate for the short

and fixed-length naming mechanism, such as IPv4/IPv6 addresses.

For the URL-similar naming mechanism, such as NDN names,

the lookup speed will dramatically slow down and the memory

consumption will greatly inflate because of the high depth of the

trie [21, 20, 26].

Hash-based Algorithms: Hash-based approaches appear to be

an excellent candidate for LPM with the possibility of fast lookup

speed and low latency [25, 22, 24]. DIR-21-3-8 algorithm [15] pro-

posed by Gupta et al. can achieve one route lookup every memory

access by implementing in a pipelined fashion in hardware. In this

scheme, the IP prefixes in the FIB are “leaf push”6 and partitioned

into three sets: a 21-bit prefix set, a 24-bit prefix set, and a 32-bit

prefix set, and therefore only three memory accesses are needed

in the worst case. However, DIR-21-3-8 algorithm, based on “leaf

push” technology, is useless for the NDN FIB with URL-similar

prefixes, since the granularity of a URL-similar prefix is a com-

ponent not a bit and the NDN FIB cannot support for “leaf push”

consequently.

Saranget al. [12] proposed the first algorithm that employs Bloom

filters for LPM. This algorithm performs parallel queries on Bloom

filters in order to determine address prefix membership in sets of

prefixes sorted by prefix length. Similarly, NameFilter [22] exploits

Bloom filters to determine the longest matching prefix of a searched

name in the first stage. Compared with Sarang’s algorithm, Name-

Filter’s Bloom filters in the first stage are too large to fit in the on-

chip memory, hence the look speed of NameFilter is dramatically

decreased even using one memory access Bloom filters to organize

the prefix sets.

CCNx [5], as the current prototype implementation of CCN [16],

achieves LPM based on the linear search scheme introduced in

Section 2.3.1. Given a hierarchical name with a number of com-

ponents, CCNx retrieves all possible prefixes from the name, con-

ducts exact-match search of the prefixes, from the longest one to the

shortest one, in the FIB, and stops when the first match is found.

The overall forwarding performance, however, is at least an order

of magnitude below wire speed [29].

6“Leaf push” means that a prefix node is pushed down to its chil-
dren nodes for keeping the same length with other prefixes. For
example, a 3-bit length IP prefix 111* can be “leaf push” to 1110
and 1111 for 4-bit length prefixes.

In summary, the aforementioned hash-based LPM algorithms

cannot support for random search. On the contrary, Waldvogel et
al. [19] and Patrick et al. [28] improve the lookup performance by

reconstructing the original FIB to support random search. Beyond

that, Ω-LPM designs a dynamic programming algorithm to find the

optimal search path to further increase the lookup speed.

7. CONCLUSION
In this paper, we proposed the Ω-LPM scheme to improve the

lookup performance of hash-based LPM. By inserting the meta-

prefixes of the original prefix into the FIB, Ω-LPM can support for

random search which is the foundation for optimizing the search

path. Fortunately, the number of prefixes including the meta-prefixes

and the original prefixes in the reconstructed FIB is equal to the

number of edges in a trie which is used to construct the original

FIB. To further increase the lookup speed, Ω-LPM employs a dy-

namic programming algorithm to find the optimal search path to

reduce the number of hash table probes. The case studies of the

name lookup and the IP lookup demonstrate that Ω-LPM can ef-

fectively shorten the search path. The experimental results also

show the Ω-LPM has good performance of memory consumption

and scalability.

8. ACKNOWLEDGMENTS
The work is supported by the Shenzhen Key Fundamental Re-

search Projects (No. JCYJ20160330095313861), Huawei Inno-

vation Research Program (HIRP), NSFC (61602271, 61373143,

61432009), China Postdoctoral Science Foundation (No. 2015T80089,

2016M591182), the Specialized Research Fund for the Doctoral

Program of Higher Education of China (20130002110084).

9. REFERENCES
[1] The openmp api specification for parallel programming.

http://openmp.org/wp/.

[2] RFC791, Internet Protocol − DARPA Internet Program

Protocol Specification (September 1981).

[3] Berkeley Software Distribution. http:

//en.wikipedia.org/wiki/Berkeley_Software_Distribution,

2014. [Online].

[4] CAIDA Anonymized Internet Trace. http:

//www.caida.org/data/monitors/passive-equinix-sanjose.xml,

2014. [Online].

[5] CCNx project. http://www.ccnx.org/, 2014. [Online].

[6] Name Lookup Project.

http://s-router.cs.tsinghua.edu.cn/namelookup.org/index.htm,

2014. [Online].

[7] RIPE. http://www.ripe.net/, 2014. [Online].

[8] University of Oregon Route Views Archive Project.

http://archive.routeviews.org/, 2014. [Online].

[9] M. Bando and H. Chao. FlashTrie: Hash-based

Prefix-Compressed Trie for IP Route Lookup Beyond

100Gbps. In INFOCOM, 2010 Proceedings IEEE, pages

1–9, 2010.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms, Second Edition. MIT Press and

163163163

McGrawHill, 2001.

[11] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small

forwarding tables for fast routing lookups. In SIGCOMM’97,

pages 3–14, 1997.

[12] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor. Longest

prefix matching using bloom filters. IEEE/ACM Transactions
on Networking, 14(2):397–409, 2006.

[13] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap:

hardware/software ip lookups with incremental updates.

SIGCOMM Comput. Commun. Rev., 34(2):97–122, Apr.

2004.

[14] E. Fredkin. Trie memory. Commun. ACM, 3(9):490–499,

Sept. 1960.

[15] P. Gupta, S. Lin, and N. McKeown. Routing lookups in

hardware at memory access speeds. In INFOCOM’98, pages

1240–1247, 1998.

[16] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,

N. H. Briggs, and R. L. Braynard. Networking named

content. In CoNEXT’09, pages 1–12. ACM, 2009.

[17] D. R. Morrison. PATRICIA - Practical Algorithm To

Retrieve Information Coded in Alphanumeric. J. ACM,

15(4):514–534, Oct. 1968.

[18] V. C. Ravikumar, R. Mahapatra, and L. Bhuyan. EaseCAM:

an energy and storage efficient TCAM-based router

architecture for IP lookup. Computers, IEEE Transactions
on, 54(5):521–533, 2005.

[19] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner.

Scalable high speed ip routing lookups. In SIGCOMM’97,

pages 25–36, 1997.

[20] Y. Wang, H. Dai, J. Jiang, K. He, W. Meng, and B. Liu.

Parallel name lookup for named data networking. In IEEE
Global Telecommunications Conference (GLOBECOM),
pages 1 –5, dec. 2011.

[21] Y. Wang, K. He, H. Dai, W. Meng, J. Jiang, B. Liu, and

Y. Chen. Scalable name lookup in ndn using effective name

component encoding. In IEEE 32nd International
Conference on Distributed Computing Systems (ICDCS),
pages 688–697, june 2012.

[22] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu,

and Q. Dong. NameFilter: Achieving fast name lookup with

low memory cost via applying two-stage Bloom filters. In

Infocom mini-conference’13, 2013.

[23] Y. Wang, D. Tai, T. Zhang, J. Lu, B. Xu, H. Dai, and B. Liu.

Greedy name lookup for named data networking. In ACM
SIGMETRICS, pages 359–360. ACM, 2013.

[24] Y. Wang, D. Tai, T. Zhang, J. Lu, B. Xu, H. Dai, and B. Liu.

Greedy name lookup for named data networking. In

Proceedings of the ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’13, pages 359–360, New York, NY,

USA, 2013. ACM.

[25] Y. Wang, B. Xu, D. Tai, J. Lu, T. Zhang, H. Dai, B. Zhang,

and B. Liu. Fast Name Lookup for Named Data Networking.

In IWQoS. ACM, 2014.

[26] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu,

W. Meng, H. Dai, X. Tian, Z. Xu, et al. Wire speed name

lookup: A gpu-based approach. In Presented as part of the
10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 199–212, 2013.

[27] H. Yu, R. Mahapatra, and L. Bhuyan. A hash-based scalable

IP lookup using Bloom and fingerprint filters. In ICNP,

pages 264–273. IEEE, 2009.

[28] H. Yuan and P. Crowley. Reliably scalable name prefix

lookup. In Architectures for Networking and
Communications Systems (ANCS), 2015 ACM/IEEE
Symposium on, pages 111–121. IEEE, 2015.

[29] H. Yuan, T. Song, and P. Crowley. Scalable ndn forwarding:

Concepts, issues and principles. In International Conference
on Computer Communications and Networks (ICCCN),
pages 1–9, 2012.

[30] F. Zane, G. Narlikar, and A. Basu. CoolCAMs:

Power-Efficient TCAMs for Forwarding Engines. In

INFOCOM’03, pages 42–52, 2003.

[31] L. Zhang, D. Estrin, V. Jacobson, and B. Zhang. Named Data

Networking (NDN) Project. http://www.named-data.net/,

2014. [Online].

[32] K. Zheng, C. Hu, H. Lu, and B. Liu. A TCAM-based

distributed parallel IP lookup scheme and performance

analysis. Networking, IEEE/ACM Transactions on,

14(4):863–875, 2006.

164164164

